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In ref. 1, �G°acid(HN(SO2C4F9)2,) � 284.1 � 2.0 kcal�mol�1 is
provided, and it is noted that T�Sacid � 7 � 0.8 kcal�mol�1 is
generally applicable for the acids that were studied. We used this
quantity to derive the value of �H°acid(HN(SO2C4F9)2) given in
the text.

An alternative value of �H°f(LiOH) � �54.7 � 1.2 kcal�mol�1

has been reported (2), but the current quantity in the NIST
database (3) was used because it is in better accord with a
recommended value of �57.1 � 1.2 kcal�mol�1 based on previ-
ous high-level computations (4) and the high-level theoretical
predictions of �57.8 (W1), �57.2 (W2C), and �56.8 (CAS-
AQCC/aug-cc-pVQZ) kcal�mol�1 in the present study.

D0(LiOO�) � 87.6 kcal�mol�1 has been reported (5) and is in
reasonable accord with crude estimates of 82 � 4 (6) and 91

kcal�mol�1 (7). No experimental uncertainty was given for D0,
but a second less reliable measurement was provided in the same
study that is 3 kcal�mol�1 larger. Our best calculations give a
value of �84 kcal�mol�1, so an uncertainty of � 3.0 kcal�mol�1

was adopted. This bond energy was converted to 298 K by adding
0.9 kcal�mol�1 (3/2(RT)) and combined with �H°f(Li) � 38.07 �
0.24 kcal�mol�1 and �H°f(O) � 59.555 � 0.024 kcal�mol�1 (3) to
obtain the heat of formation of LiO�. Other values based on
appearance potential measurements made 35–50 years ago are
considered to be unreliable (3, 8–10). This includes the heat of
formation given in the NIST database (20.1 � 5.1 kcal�mol�1),
which is the average of two measurements from one study [i.e.,
the mean of 13.7 � 2.5 and 18.3 � 5 kcal�mol�1 is 16.0 � 5
kcal�mol�1 (9), but this value was subsequently modified upon a
reevaluation of the poorly established auxiliary data].
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Table S1. Relative energies of LiCO2
� isomers 1 and 2 and the EA(1) at various computational

levels

Method

ERel, kcal�mol�1

EA(1), eV

1 2

Singlet Triplet Singlet Triplet

B3-LYP/6-311�G(2df,2pd)* 0.0 3.4 2.2 1.5 0.59
B3-LYP/AA�VTZ 0.0 3.7 2.4 2.2
CCSD(T)/AA�VTZ† 0.0 4.7 3.0 4.5 0.49‡

W1 0.0 4.9 3.2 4.7 0.65§

All energies are at 298 K.
*Similar geometries are obtained with the AA�VTZ basis set in that all of the bond lengths are within 0.005 Å.
†These single-point energies were obtained by using the B3-LYP/AA�VTZ geometries and scaled zero-point
energies and temperature corrections.

‡CCSD(T)/aug-cc-pVTZ energy.
§G3 energy.
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Table S2. Computed energetic quantities for LiOH and LiO� at 298 K (kcal�mol�1)

�H°f(LiOH) �H°f(LiO�) EA(LiO�) BDE(LiOOH) �H°acid(LiOH)

B3LYP* —† —† 12.7 120.8 421.3
G3 �56.7 12.6 11.8 121.3 423.9
G4 �57.0 12.7 12.3 121.8 424.1
AQCC‡ �56.8 12.5 9.0 121.4 426.2
BD(T)§ —† —† 9.8 121.1 425.0
W1 �57.8 12.4 9.9 122.4 426.3
W2C �57.2 12.9 10.0 122.2 426.0

*B3-LYP/6-311�G(2df,2pd).
†Method not suitable for computing atomization energies.
‡CAS-AQCC/aug-cc-pVQZ.
§BD(T)/aug-cc-pVQZ.
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Table S3. Computed B3-LYP/6-311�G(2df,2pd), G3,
BD(T)/aug-cc-pVQZ, and CAS-AQCC/aug-cc-pVQZ acidities of HX
at 298 K

Compound

�H°acid, kcal�mol�1

B3-LYP G3 BD(T) AQCC

LiBH2 392.6 391.3* 395.1 393.7
LiCH3 399.7 400.7 401.6 402.8
LiNH2 410.3† 411.6 413.5 414.7
LiOH 421.3 423.9 425.0 426.2
LiSH 373.5 372.9 375.8 376.0
LiH 359.5 354.5 355.8 356.3
BeH2 397.0 392.7 393.4 395.9
BH3 411.9 413.5 412.1 412.2
CH4 416.7 419.3 418.8 419.2
Li2BH 387.8 386.0* 385.3 384.8
Li2CH2 397.6 397.0 399.8 400.1
Li2NH 412.5 423.7 417.6 419.7
NaCH3 401.1 401.6 401.2 402.0
NaOH 413.0 417.8 418.6 419.7
NaSH 377.8 379.1 382.0 381.5
NH3 404.4 405.1 403.7 404.9
H2O 390.7 391.4 390.4 394.1
HF 370.0 372.3 371.8 374.1

Interestingly, LiH, BeH2, and BH3 show the same trend with electronega-
tivity as the lithiated species and the opposite relationship to the remaining
first-row hydrides.
*G3B3 energy.
†A referee suggested that LiNHCH3 be considered. We have calculated its
B3-LYP acidity as 398.9 kcal�mol�1; i.e., it does not compete with LiOH as the
weakest acid.

Tian et al. www.pnas.org/cgi/content/short/0801393105 4 of 4

http://www.pnas.org/cgi/content/short/0801393105

